Problem 1 

Let $ABC$ be an acute triangle such that $CA \neq CB$ with circumcircle $\omega$ and circumcentre $O$. Let $t_A$ and $t_B$ be the tangents to $\omega$ at $A$ and $B$ respectively, which meet at $X$. Let $Y$ be the foot of the perpendicular from $O$ onto the line segment $CX$. The line through $C$ parallel to line $AB$ meets $t_A$ at $Z$. Prove that the line $YZ$ passes through the midpoint of the line segment $AC$.

Copyright BB © 2025
Авторски права ББ © 2025