Problem 2.
 
In an acute-angled triangle \(ABC\), \(H\) be the orthocenter of it and \(D\) be any point on the side \(BC\). The points \(E, F\) are on the segments \(AB, AC\), respectively, such that the points \(A, B, D, F\) and \(A, C, D, E\) are cyclic. The segments \(BF\) and \(CE\) intersect at \(P.\) \(L\) is a point on \(HA\) such that \(LC\) is tangent to the circumcircle of triangle \(PBC\) at \(C.\) \(BH\) and \(CP\) intersect at \(X\). Prove that the points \(D, X, \) and \(L\) lie on the same line.
 
 
Solution 1
We first claim the following:
This claim wrote:
The reflection of $P$ over $BC$ is the second intersection of $AD$ and $(ABC)$.

Proof. Let $P'$ be the second intersection of $AD$ and $(ABC)$. Then, since 

\begin{align*}
\measuredangle PBC &= \measuredangle FBD \\
&= \measuredangle FAD \\
&= \measuredangle CAP' \\
&= \measuredangle CBP' \\
&= -\measuredangle P'BC
\end{align*}

then $BP$ and $BP'$ are reflections over $BC$. Note that since $\measuredangle AEP = \measuredangle ADC = \measuredangle ADB = \measuredangle AFP$, then $AEPF$ is cyclic, implying that $\measuredangle BPC = \measuredangle FPE = -\measuredangle BAC = \measuredangle BP'C$, so $P$ and $P'$ are indeed reflections over $BC$.

Now we reflect everything except $A$ over $BC$, without overlaying the new diagram with the old one. We can also do barycentrics on $\triangle ABC$ now.
Let $a$, $b$, $c$, $A$, $B$, $C$, $S_A$, $S_B$, $S_C$ denote $BC$, $CA$, $AB$, $(1, 0, 0)$, $(0, 1, 0)$, $(0, 0, 1)$, $\frac{-a^2+b^2+c^2}{2}$, $\frac{a^2-b^2+c^2}{2}$, $\frac{a^2+b^2-c^2}{2}$ respectively. (I know that's a lot but they're just common notation anyway)
We first calculate $H$. Let $H=(t:S_C:S_B)$. Then, \begin{align*}
-a^2S_BS_C - b^2S_Ct - c^2tS_B &= 0 \\
\iff t &= -\frac{a^2S_BS_C}{b^2S_B+c^2S_C}
\end{align*}so $H=(-a^2S_BS_C: S_C(b^2S_B+c^2S_C): S_B(b^2S_B+c^2S_C))$. Let $P = (x:y:z)$. Then obviously $-a^2yz-b^2zx-c^2xy=0$. We can also calculate $X=(-a^2S_BS_Cx : -a^2S_BS_Cy : S_Bx(b^2S_B+c^2S_C))$, $D=(0:y:z)$ and $L=(-a^2S_C:b^2S_C:b^2S_B)$. Finally, \begin{align*}
\begin{vmatrix}
0&y&z\\
-a^2S_C&b^2S_C&b^2S_B\\
-a^2S_BS_Cx&-a^2S_BS_Cy&S_Bx(b^2S_B+c^2S_C)\\
\end{vmatrix} &= -a^2S_C
\begin{vmatrix}
0&y&z\\
1&b^2S_C&b^2S_B\\
S_Bx&-a^2S_BS_Cy&S_Bx(b^2S_B+c^2S_C)\\
\end{vmatrix} \\
&=-a^2S_BS_C
\begin{vmatrix}
0&y&z\\
1&b^2S_C&b^2S_B\\
x&-a^2S_Cy&x(b^2S_B+c^2S_C)\\
\end{vmatrix} \\
&= -a^2S_BS_C((-a^2S_Cyz - xy(b^2S_B+c^2S_C))+(b^2S_Bxy-b^2S_Cxz)) \\
&= -a^2S_BS_C(-a^2S_Cyz-b^2S_Czx-c^2S_Cxy) \\
&= 0
\end{align*}so we're done.

 

Solution 2

Let  $\triangle ABC$ be inscribed in the unit circle, and let $AD$ meet the unit circle again at $U$, so that
$$|a|=|b|=|c|=|u|=1$$
$$h = a+b+c$$
$$d = \frac{au(b+c) - bc(a+u)}{au-bc}$$

Let lines $BF,CE$ intersect the unit circle again at $V,W$ respectively. Now since $A,B,D,F$ are concyclic, we have
$$\frac{(a-d)(b-f)}{(a-f)(b-d)} \in \mathbb{R} \implies \frac{(a-u)(b-v)}{(a-c)(b-c)} = \frac{c^2(a-u)(b-v)}{uv(a-c)(b-c)} \implies c^2 = uv$$

So
$$v = \frac{c^2}u$$

and similarly


$$w = \frac{b^2}u$$

Then


\begin{align*}
p &= \frac{bv(c+w) - cw(b+v)}{bv-cw} \\
&= \frac{\frac{bc^2}u\left(c+\frac{b^2}u\right) - \frac{b^2c}u\left(b+\frac{c^2}u\right)}{\frac{bc^2}u-\frac{b^2c}u} \\
&= \frac{bc^3u+b^3c^2-b^3cu-b^2c^3}{bc^2u-b^2cu} \\
&= \frac{c^2u+b^2c-b^2u-bc^2}{cu-bu} \\
&= \frac{bu+cu-bc}u
\end{align*}

(So $P$ is the reflection of $U$ over line $BC$.) Now since $L$ lies on line $HA$, we have


$$\overline{\ell} = \frac{a\ell + bc - a^2}{abc}$$

And since $LC$ is tangent to the circumcircle of $\triangle PBC$, we have


$$\frac{(c-\ell)(b-p)}{(b-c)(c-p)} \in \mathbb{R}$$$$\frac{c(c-\ell)(b-u)}{b(b-c)(c-u)} = \frac{\frac1c\left(\frac1c-\frac{a\ell + bc - a^2}{abc}\right)\left(\frac1b-\frac1u\right)}{\frac1b\left(\frac1b-\frac1c\right)\left(\frac1c-\frac1u\right)} = -\frac{(a^2+ab-a\ell-bc)(b-u)}{a(b-c)(c-u)}$$$$ac(c-\ell) = -b(a^2+ab-a\ell-bc) \implies \ell = \frac{a^2b+ab^2+ac^2-b^2c}{a(b+c)}$$

Now we find the coordinate of $X$. Since $X$ lies on line $BH$, we have


$$\overline{x} = \frac{bx+ac-b^2}{abc}$$

Since $X$ lies on line $CP$, we have


$$\frac{c-x}{c-p} \in \mathbb{R}$$

$$\frac{u(c-x)}{b(c-u)} = \frac{\frac1u\left(\frac1c - \frac{bx+ac-b^2}{abc}\right)}{\frac1b\left(\frac1c-\frac1u\right)} = -\frac{ab-ac+b^2-bx}{a(c-u)}$$$$au(c-x) = -b(ab-ac+b^2-bx) \implies x = \frac{ab^2-abc+acu+b^3}{au+b^2}$$

Now we find the vectors


\begin{align*}
d-\ell &= \frac{au(b+c) - bc(a+u)}{au-bc} - \frac{a^2b+ab^2+ac^2-b^2c}{a(b+c)} \\
&= \frac{a(b+c)(abu+acu-abc-bcu) - (au-bc)(a^2b+ab^2+ac^2-b^2c)}{a(b+c)(au-bc)} \\
&= \frac{-a^3bu-a^2bc^2+2a^2bcu+ab^3c+abc^3-abc^2u-b^3c^2}{a(b+c)(au-bc)} \\
&= -\frac{b(a-c)(a^2u+ac^2-acu-b^2c)}{a(b+c)(au-bc)}
\end{align*}

and


\begin{align*}
x-\ell &= \frac{ab^2-abc+acu+b^3}{au+b^2} - \frac{a^2b+ab^2+ac^2-b^2c}{a(b+c)} \\
&= \frac{a(b+c)(ab^2-abc+acu+b^3) - (au+b^2)(a^2b+ab^2+ac^2-b^2c)}{a(b+c)(au+b^2)} \\
&= \frac{-a^3bu-a^2b^2u-a^2bc^2+a^2bcu+ab^3c-ab^2c^2+ab^2cu+b^4c}{a(b+c)(au+b^2)} \\
&= -\frac{b(a+b)(a^2u+ac^2-acu-b^2c)}{a(b+c)(au+b^2)}
\end{align*}

Then


$$\frac{d-\ell}{x-\ell} = \frac{(a-c)(au+b^2)}{(a+b)(au-bc)}$$

which is real. $\blacksquare$

 

 
 
 

 

 

 

 
Copyright BB © 2025
Авторски права ББ © 2025